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The motion of a heavy solid about a fixed point with high initial angu- 

lar velocity has been investigated (omitting the case of Lagrange) for 

the case of GQriachev-Chaplygin in [1,21. Cases with restrictions on the 

location of the center of gravity, on moments of inertia and on the 

initial conditions has been investigated in [3,41. 

In our work we apply the method of small parameters to investigate 

the periodic solutions of the equations of motion of a heavy solid with 

one point fixed rapidly spinning about one of the principal axes of the 

ellipsoid of inertia. In particular, we show that, with the exception 

of special cases, when zO f 0 the body will perform a pseudo-regular 

precession about the vertical axis in the first approximation, and that 

at least four of the six initial conditions are arbitrary. 

1. Let us consider a heavy solid with one point fixed, whose 

ellipsoid of inertia is arbitrary, and whose center of gravity is arbi- 

trarily located and not necessarily coinciding with the fixed point. 

General equations of motion of this solid and their first integrals are 

A$ + &f + Cr2 - 2Mg b-r + yor’ + wr”) = 
= Apz + 13q02 + Cr,” - 2Mg bore + YoTo’ + ~droll) 

1314 



Motion about a fixed point of a fast spinning heavy solid 1315 

API’ + Bqy’ + Cry” = Ap,r, + Bq,r,’ + CF,-J’,” 

72 + y’2 + p = 1 
(1.2) 

h-e po, clo, roJ yo, yo’ and yo” are the intial values of the cor- 

responding variables, symbols like (abc) mean cyclic permutations and 

indicate equations which are omitted. 

We shall assume that at the initial instant of time the principal 

axis z of the ellipsoid of inertia makes an angle 0,(8, f l/2 k*, k = 

0, 1, 2) with the vertical, and that the body spins about this principal 

axis with a high angular velocity ro. Without loss of generality, we 

select the moving coordinate system in which the positive branches of 

the z-axis and of the x-axis do not make an obtuse angle with the 

direction of gravitational acceleration at the initial instant of time. 

In this coordinate system, then r. 20, and because of the restric- 

tions on O,, the initial values y. and y. "must satisfy the conditions 

ro > 09 O<r,“<l (1.3) 

Let us introduce 
- 

G-g, b=;, c2 - Mgl c Jf To” 

c ’ P= 
PO 

(1.4) 

X0 = 1x0’, Yo = LYO’, 20 = Zzo’, l2 = xo2 + yo2 + 202 

By assuming that r. is large, we assume that v is small. Let us now 

introduce a new variable through the formulas PI, 'I~, rl, yl, yl', y," 

and T 

P = c lfz PlC 9=c V7i!Tl, r = rorl (1.5) 

9, = To%, T'= ro"r1, r" = roOrrn, t=z/r, 

Equations (1.1) and their integrals (1.2) will, with the new vari- 
able, assume the form 

A + A,q,r, = pa-l (yo'r"r - zo'~r'), Tl = rlTl' - cL41rl" 

@I + %w, = M-l (zo'rr - ~o'rr"), ir' = PPG~“- ‘1~1 

iI = p2 (- ClPl9, + Zo'r1'- YO'TA rl" = ~(41"(1-P1Y1') 6 

7.12 = 1 + p?sl (S1= a (Plo" - Pl? + b (910" - 912) - 

- 2 [x0' (TlO - 71) + Yo' (710' - 71') + 20' (1 - rl")> 

rl~rW = 1 +fJs, (Sz = a (PIOYIO - PCJ + b (qlorm’ - qlrl)) 

712 + T1'2 + T/2 = (70T2 

(1-W 
.du/dx) 

(1.7) 

(1.8) 

(1.9) 
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1Jsing the first integrals (1.7) and (1.81, we express the variables 

rl and y,- in terms of the remaining variables p !, ?I# yIft Ye”, and in 
those of their initial values pl,,, ql,, ylO, y10 , and in those of the 
small parameter p 

rr = 1 + "/al.9 [S, + 22,' (1 - 7,")J + . * * 

7; = 1 + ps, - Yp,p ts, + 22,'(1 - 7l")l + . * * (1.10) 

and reduce the remaining four equations of the system (1.6) to two 

second order equations 

iji + oapr = P [z,’ (a-i+ A$-l)r,+ Alb%l'l + P2 <--o"p, B,$_ 

+ 2%' (1 -7l")l + -Q-1%'S, + A&,P,!?r2 - A1.%'Q171' - Yo'a-%Tr' i- 

+ yi,' (A, + 0 ~171 - ~,,'a-%1 + P%'W, (a-" - b-l&) IS, -I- 

+ 2%' (1 - rl")lr1 - @a2 + a-1) PJ,) + * l * (1.11) 

r;+ 71% P(i + Bl) Pl +p2 {- Yl 131 + 2%' (1 - r,“)l + (1 + mPl&+ 
+ (1 + C,) Prwrl + ~;r1’2 - YO'717l' - b-1Z;7l + b-%I' - 412711 + 

+ /Aa I- 2,' (2 + b-l) 7,& + Zb-lz,'Is,J + * . . (1.12) 

02 = - A$?, = (a - 1) (b - 1) / ab = (A - C) (B - C) I AB (1.13) 

Solving the first and fourth equation of system (1.6) for q1 and yl' 

we obtain 
(1.14) 

qr = (A&-l I- i)r + I-@ (~0'7; - za'rl.')lt 71' = (7'P ii-1 + fW,7;1 

in which rl and yl" are replaced by (1.10). Substituting (1.14) in the 

right-hand terms of equations (1.11) and (1.12), we obtain a quasilinear 

autonomous system with two degrees of freedom, whose right-hand sides 

depend on pll IjlB yl, +1, pl,,, filol ylo and tlo- 

We want to find periodic solutions of this system under conditions 

A > B > C, or A < B < C (a2 is positive). In the first case, o < 1 and 
the z-axis should coincide with the major axis of the ellipsoid of 

inertia. In the second case, 021 and the z-axis should coincide with 

the minor axis of the ellipsoid of inertia. The case o = 1 corresponds 

to the disc 

A+B=C (a + b = I), z. =: 0 (1.15) 

Let us introduce new variables p2 and y2 through 

Pl = Pz + w + P1Tzr Tl = 72 -t ELVPZ (1.16) 
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xo’A1 xc- 2”’ 
bw’ ’ xl=-l_o” a - (’ + 2) ) 1 -kh 

v -= 1 (1.17) 

Using formulas (1.16) and (1.10) and (1.14) we can obtain the 

following power series expansion in p: 

Si = Si, + azmi /.LSi, + . . t (i = 1, 2) 

r, -= 1 + ‘/zp2S,, + . . ., yI” = 1 + @,, + /A~ (S,, - V2S11) + . . . (1.18) 

q1 = - AF& + pA,-l (~,,‘a-~ - x,i,) + . . ., yl’ = +,, + pv2p2 + . . . 

x2 = x1 + Lrlzo, vg = v - A,-l (1.19) 

where 

Sll = a (P20 - Pz”) + b (P20” - lj22) 1 A,* - (1.20) 

- 2 [%I’ h20 - r2) 4 Y,’ ti,, - T2) 1 
s12 =a 1% (P20 - P2) + ~1 (P2or20 - P272)l - b4-2 bo’a-l (P20 - P2) - 

- x2 ti2oa20 - f2P2)l - %‘V (P20 - P2) - Yo’V2 (P20--- P2) + h’s21 

S21= a (Pzorzo - ~2~2) - b&-l (Pzor20 - b,r’,> 

s22 =R a Iv (Pzo2 - P22) + x (+r20 - 72) + Xl (T202 - r22)l + 

+ bA,-l [- ~2 t/j202 - P22) + a-h’ (i,, - i,> - ~2 (iso:! - i,“)l 

Substituting (1.16) and (1.18) into equations (1.11) and (1.12), we 
obtain 

$2 + 02p2 = p217 (~2, b2r ~2, ?2,p), F ;= F, + pF, + . . . (1.21) 

r2 + r2 = p2@ (P27 P2, 72, r2, p) 0 = Q2 + pQ’3 + * . . 

F, = f2 - vxl (1 - to2) p2 

F, = f3 - xl’p2 - vlclx (1 - 02) - vx12 (1 - 02) y2 (1.22) 

@2= ($2 + vx(1 - 02) + vxl(l - 02) 72, as = (p3 - vf2 + Aq(2 - 02) pa 

where 

(1.23) 

f2 = - w2p2Sl, + A,b-‘z,‘S,, + C,A,-lp,p,2 + q,‘rj,+, - ~,,‘a-lp,& - 

- yo’A1-l (A, + a-‘) y2P2 - ~~‘u-~p~ 

fs = - co2 W,, + w2S11 + 2p2S12) -1 Alb-lz,‘S,, + GA,-l Ma2 + 

+ w2~22 - 2P2@2 (Yo’a-l - x2iz)l - 50’ I- v2PaP + r, (yo’a-l - x2i31 - 

- yo’a-’ ii2 (x + “02) + vzpzlj21 + Y~‘A,-~ (A, + a-‘) 17’2 &‘a-l - x,+2,--. 

- vp2p21 - z,‘u-1 (x + w2) + ‘/2%’ (a-’ + A&-I) ~2S1, + ~o’~-1p2S21 
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This system has a first integral which can be obtained from the inte- 

gral (1.9) 

We are going to look for periodic solutions pz(~$ 14, i2(r, u), 

~~(7, 1.4 and $2(-r, cl) of system (1.21), but only those which satisfy 

conditions 

Since system (1.21) is auton~ous~ the above conditions do not affect 

the generality of the solution. 

Since the frequencies of the generating system 

i2 -+- w2p2 = 0, r,-t- 7.2 = 0 (1.26) 

are w and 1, we can construct [51 periodic solutions of system (1.21) 

in three different ways: 

1) %en the two frequencies are distinct but commensurate (o = m/n, 

where m and R are refative primes); 

2) Men the two frequencies are equal (o = 1); 

3) When the two frequencies are noncomnensurate (a is irrational). 

2. Let us consider the first case, w = n/n. fn this case, there exist 

periodic solutions of the generating system (1.26) with the period 

To =2an 

IYe assume that the initial autonomous system (1.21) has periodic 

solutions with the period TO + a, which reduce to the generating solu- 

tion (2.1) when p = 0. Pe shall write the initial conditions through 
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the relations 

P2 (07 F4 = M, -5 PI1 ria (07 F) = ” uf2 + Pa) 

72 (0, p)= MS + list i2 (0, I4 = 0 (2.2) 

Let us also introduce the operator 

and express t51 the periodic so.lution which we want to find in the form 

72 tz, id = (MB + fh) cos z + fbk bb” 
k=2 

(2.3) 

g, (z) = 4 i Fk’ (tJ sin o (z - tJ dt,, hk (z) = 5 Q),+‘(tJ sin (IT - tJ dt, 

0 0 

Here PI, Opz and pJ are deviations of the initial values of pzt j, 

and yz in the periodic solutions of equations (1.21) from the initial 

values of the same quantities in the generating solution (2.1). These 

deviations are functions of w, and they vanish when u = 0. 

Since the right-hand sides in system (1.21) begin from a term of the 

order u2, we have the following relations: 

Fk' (r) = Fk (P $0, &O), r&o), &(o') - Fkfo) 

@k'(r) = @,$ @a('), j.&('), r‘$'), &O)) = @)h.(o) 
(k = 2, 3) (2.5) 

Let us find now the functions F2 ('I and 0,"'. Tntroducing the nota- 

tion 

E= fM?+M& cos .??J = M,fE, sin E = M,IE (2.6) 

formulas (2.1) take the form 

p,(O) (z) = E cos (COT - E), ~~(0) (IT) = M3 COST (2.7) 

1Jsing (2.7), and by (1.2(l), formulas 

s 
11 

(0) -_ &, (p,(O), p,m, fy2(0), 1;2’o’), szl(0) = s,, (p,(O), p’,(O), y,(O) 
'I ci,(O)) 
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become 

srr(*' = E2 {[a (cos2 E - l/a) + bo2A1+ (sin2 E - '/a) + 

+ V2 @o~A~-~ - U) cos 2 (WC - E)} - 2Ms [CEO’ (1 - cos T) + yo’sin Z] (2.8) 

s (0) 
21 = iIf&3 {a cos e + */2 (bc~A,-~ - a) cos [(o - 1) z - E] - 

- l/z(b~A1-l + a) cos [(o + 1) z - ef} 

Substituting (2.7) and (2.8) into formulas (1.22) and (1.2?1), re- 

spectively, we obtain for all the values of w (with the exception of 
the case 0 = l/Z, which will be considered later) the expressions 

(2.9) 

F2(0'= M&(o) cos 0 t + M,L(w) sin 0% + . . . , @)2(“) = M,N( 0) cos z _i- . . . 

where 

L (0)) = co2 [- (aMI2 + bo2A1-2M’22) + Va (Ml2 + M2) (C,A,-1 + 
. 

+ 3a + bw2AI-2)l + 2M,022,’ - [zo’trl + xlv (1 - wz)] 

N (0) = - (uM,2 + ~,J~A~-~M;) - Yz (M,z + M,2) [UB, + (2.10) 

-+-u2A1-” (4 - b)l -t 2M35@’ - [2*%-l - XIY (1 - “%)I 

From formulas (2.4) and (3.5) we obtain 
(2.ll) 

g, (To) = - &rFp’ (t,)sin ot,dt,, g;, (T,) = i;;(O) (tr) cosot,&, 

0 0 

hk (To) = - ['Q'*'(tJ sin t, dtl, & (To) = jrh(*) (t& cos t,dt, (*; z ,“;I) 
* 

0 0 

Hence, by using (2.9) we have 

g, (To) = - ~~~-l~2~(~), ga (To) = ~~~~~(~) 

h,(To) = 9, &(T*) = nnM&(w) 

'Ihe constants M,, A!2 and MS, which represent the initial 

(Z.lZ) 

conditions 

of the generat& solution (2.1), the deviations PI(p), wF2(p) and 

p3(c1) and the correction for the period a, must be found from the con- 

ditions for periodicity of the solutions P~(T, II), yz(~, cl) and their 

first derivatives; these conditions have the form (2.13) 

y, = pz(T, + a,@ - P2(0, p) = 0, Y, = pz(To + %p) -Ij2 (0, CL) = 0 

yf, == rz(T, + @., p)-Y2(0, PI = 0, yf* = i2V" + %Pl- i,(O, FL) =o 
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However, on the strength of the existence of the first integral 

(1.24) of system fl.21), the condition for periodicity Y, = 0 is not in- 

dependent [63. Indeed, writing the integral (1.24) in the form 

rz,'(To + a% P) + "i22Kl+ a7 P) + Pt...> = GW P) + r22 (0, cl) +P(...) 

and substituting formulas (2.13), we obtain, according to condition 

(2.2) 

2 (M, + PA YQ + y.v,2 -k ~~l(Yl, y,* y,, Y*,P,) = 0 (2.14) 

in which p1 is an entire function of all its ar&$%.Iments, and, besides, 

~~(0, 0, 0, cl) = 0. Fhen MS f 0, which, as is shown later, is always 

the case, then by formula (2.14) Ty, = ffyll, Y’,, Yy,, v), where f is an 
entire function of all its arguments, and f(0, 0, 0, cl) =: 0. Gonsequentl 

we can see from (2.13) that condition Ys = 0 is automatically satisfied 

when the remaining conditions 

are satisfied. 

Substituting the initial conditions (2.2) in the integral fl.24)when 

T = 0, we obtain the equations determining !f, and FJ 

.M: + 2MsP3 -+- Ps2 -f-.%WMs(M1+- B1> + * - * = Troy-- 1 

Assuming that y0 "is independent of ~1, we obtain 

.Al,z = (roT" - 1, flz + ZiM& + Z~VM~(M~ A- &) i l e . = 0 (2.%6) 

From equations (2.16) and from condition (1.3) it follows that 
(2.17) 

because y0 '*is an arbitrary parameter, and !I3 is an 

constant. 

arbitrary positive 

1x1 this way, the periodic solution (2.3) depends on one arbitrary 
constant M, and on a function ps(b), vanishing when IJ = 0. This propert) 

does not depend on the form of & and occurs in all considered cases. 

Expanding the right-hand sides of equations (2.13) in power series 

of a and retaining only the linear terms (neglecting even the terms 

p2a), we obtain the independent conditions of periodicity (2.15) in the 

form 
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P2 (TO? EL) - M, - PI + ml) (M, + p2> = 0 

t;2 (TO? P) - 0 (n/r, + B2) - m.02 (Ml + PI) = 0 

r2 (To, CL) -cc CM, + P3) = 0 

(2.18) 

By the last equation, from (2.18) and by (2.17) and (2.3), we deter- 
mine the function 

a=~2Lfjzf~,)+~~~f~O)+.‘.l i@f,+fQ (T, = 2Jcn) (2.19) 

We can conclude from it that by neglecting terms of the order o2 and 

p2a in system (2.18)‘ we neglect also terms of the order p4. 

IJsing (1.25) and (2.2) we shall now investigate those periodic solu- 

tions which arise when the fundamental amplitudes vanish, that is 

M, = 0, Ma I=: 0 (2.20) 

Substituting relations (2,19), (2.20) and (2.3) in the first two 

equations (2.18) and cancelling u2, we obtain the system determining rJ1 

and P2 

Gz (To) + PG, (To) + 082 [fi, (T,) + p& (T,) + . . . 1 / (M, + p2) -+ 

+ p2 (. . .) = 0 (2.21) 

e2 (To) ii- pG, (II’,) -w”B1 rfi2 (To) $ p.r_i‘, (1‘0) + . . . 1 / (lM2 + 82) + 

+ p2 (. . .) = 0 

llsing (2.12) we can transform the above system into 

Here L,(w) and RI(o) are obtained from (2.10) by replacing M,, if, 

and A!, by PI, pa and 61, + p3. By (1.1X), (1.17) and (1.19), we obtain 

Jh (u) - a “N, (0) = w (0) @1” i- P2”) - ZO’Wl (0) (2.23) 

lV(o)==(a - I)@ + h - 2)/2b, IV,(o)=(3a f-- 3b - 4ab - 2)lab (2.24) 

From the condition that the z-axis has to be directed along the 

major or the minor axis of the ellipsoid of inertia of the body, it 

follows that for all the considered o, 'Y{(o) > 0. We shall now show that 
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for every value of w >l there exists only one pair of numbers a* and 

b* satisfying the condition V,(O) = 0, and that for the values of w < 1, 

W,(U) # 0. 

Eliminating a * from the system of two nonlinear equations (2.25) 

3a* + 3b* - 4a*b* - 2 = 0, 0' - (a* - 1) (b* - 1) I a*b* = 0 

we find 

(1 - 6*)2 
co2 = 36’ (21s _ p.) , Or (2.26) 

It is seen that the above formula is valid only when o>l. Con- 

sequently, we have the following relation: 
(2.27) 

____ 

O<a*\(b*<l ,a*- t 
I+&- 1/02((02- 1) l+~2+v(02 (O’L - 1) 

302 + 1 ( b* =__ 30”+ 1 , 1 
When o = 1, it follows from formulas (2.27) that a* = b* = l/2, and 

for every value of 0 > 1 there exists a unique pair of distinct values 

of a* and b* satisfying (2.25). Besides, by (2.26) 

II, < a* < b* < V, (2.28) 

Assuming that 

Za'W, (Q) # 0 (2.29) 

we obtain from equations (2.22) the expansions of p1 and Fz in power 

series in I_I. 

To make an estimate of the order of the first terms of these ex- 

pansions, we shall consider the quantities C3(T,,). and &(7',,) under con- 

ditions (2.20). Calculations show that C3(T0) = C3(T,,)=0 when o f 2. 

This means [71 that the expansions of p1 and pz in series of integral 

powers of u begin from terms whose order is not higher than u2. Con- 

sequently, when o is rational and does not equal 1, 2, l/2, the first 

terms in the expansion of the periodic solution of the system (1.6) and 

the quantities a both under the conditions z,,' f 0, a = a*, b = b*, can 

be expressed in the following form: 

p, = - ~x,,‘lbB, +~xlM3 cos z + . . ., q1 = pY,,‘IaA1 +~x,A,-lM,sinrf... 

rr = 1 - p2M, [r,' (1 - cos z) + yo'sin rl + . . ., rI = M3 cos z + . . . 

7-l '=-Mssinr t... (2.30) 

.ylU = 1 + p2 {[Ma (1 - a)-'~ + M32so' (A, - 1) (A, + I)-‘1 + 

+ M, (1 - b)-l yO’ sin z - Ma (1 - a)-' zO' cos T - 
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- V2 M,2z,‘(A, - 1) (A, $- If--l cos 2r} + . . . 

a = 2ykz (M&)’ - ZQ’ -c . . *) cL.31) 

3. Let us consider periodic solutions of system (1.21) when w = 2. 

For this purpose we shall find g3(T,) and g3(To) under condition (2.20). 

Under the last conditions formula (1.20) will be rewritten as 

Sz*(‘J) = - ZM, [r,’ (1 - cos T) + yo’ sin z], Sl!! (0) = g 21(o) = 0 (3.1) 

Sss(“) = jnsSif3 + Ii2 M,2 (axI + b,li-lx,)] -+- 6 bil3-’ yo’&f, sin Z - 
- uxM, cos T - 1: 2 M32 (a?$ + z&4,-” X*) cos 2t 

Substituting expression (3.1) into formulas (1.23) and (1.22), and 

retaining only terms with sin 2-r and cos 27, we obtain the relation 

I;,(O) = Vi CDS Zr + Vz sin 22 -j- . , . (J.2) 

Here 

v 

1 
= _ xo’zo’Ma2 

6ab2 
(f2b2 - h - 1), ‘z = - 6a2b (1 - b) 

Yalzo’M3” (gab2 - 17ab t_ 

+ 2b2 + 4a - 3b + 1) (3.3) 
By (3.2) and (2.11) we obtain 

83 (24 = - Il.2 nv,, g, (2x) 1=1 nv, (To = 2%) (3.4) 

Let us now consider formulas (3.3). Substituting in (3.3) a = (1 - b)/ 

(3b + 1) obtained from (1.13) when o = 2, we have 

I’, -_ - Sk’,2 x0’ q,’ b-2 (1 - b)-l (b - l/J (b 4 ‘/,I (b + ‘13) (3.5) 

v, = - a/2 M,a y,,‘zo’ b-’ (1 - b)-2 (b - l/s) (b + 5) (b + ‘/3) 

From formula (3.5) and from (1.13) it follows that VI and V2 vanish 

simultaneously if one of the following two conditions: 

a = b : i/a, x0’ zzz yet z 0 (3.6) 

is satisfied (from (2.22) it follows that ze’ f 0). 

This means that, if any one of the two conditions (3.6) is satisfied, 

then the case considered reduces to the previous one and the first terms 

of the expansions of the periodic solution of system (1.6) and the o’s 

can be obtained from formulas (2.30) and (2.31). 

If V, and Vz do not vanish simultaneously, then by substituting 

formulas (3.4) into system (2.22) and under conditions WI(2) + 0 and 
w = 2(n = I), we obtain 
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Consequently, in formulas (2.30) only the expressions for pl, qI and 

YI ” will change and become (3.7) 
, 

PI = -p$+mM,cos~ +p aof2l (2) 0% 2a + P z,#:l (2j sin 2-C + . . . 

2Tr, 

t + PAIZOWl (2) 
2Va 

sin 2t - ~_4,20,w, (2) cos 22 + . . . 

where 

s2 = - sa + 2zo,;l (2) (g -u) , 1 Al-1 
s3 = - x Mszo’ Alf 

‘* = - 2zo’W1 (2) Al v1 (“+a), 

I 

Under conditions WI(a) = 0 (a* = l/13(5 - 412) and b* = l/13(5 + ‘J12) 
system (2.22) will take the form 

i” 1 Al 
-a 

P1 (Pla f 8a2) = - @‘I* i IV* (2) + . . ., Pa (Pl* + PA = - pVs* I W* (2) + . . . (3.8) 

Hence 

P* = P1’“Y&)* Y1@) = - VI* [w* (2) (VI*2 +v,*y1+ + p”’ (. . .) 

Pz = P% Yz. @)I Ya fL) = - v,* [IT* (2) (vl*x + v,*q-*/* + $8 (. . .f 
(3.9) 

In this case the first terms of the expansion of the periodic solu- 
tion of system (1.6) and the quantity a can be expressed in the follow- 
ing form: 

p1 = pzfa Y, @) GOS 22 + pLtfsYz &) sin 2~ - uxo’ / b*B1* + pxl* M, cos T + . . . 

y1 = p%2Yl fj~) (AI*)-% sin 2~ - p”s2~,~) (A,*)-’ eos 2% + pyo’ / a*A1* + 

Li; pus* (A,*)+ sin G + . . - 

rl = 1 - p2 M, [zo' (1 - cos z) + y,’ sin ?] + . 

rl = (M3 + p3) COs t + p”‘Y*Y~ fp) cos 22 + p%*Yz @) sin 22 + . . . (3.10) 

‘rl’ = - (Ms + 8s) sin z - p’ja2vx*Yr (p) sin 2% + y’i*2vz*Yz (p) cos 2t + . . . 

rl” = 1 -f paAM Ia*Y, (t-l) i- l/%Yl fp) (26” /Al* - a*) cos z t_ 1/.2Ys @.f (2b* /AI* - 

- a*) sin T - l/sY~ 4) (2b* /A,* i: a*) COS 32 - ‘/,Y, (p) (Zb* /Al* + a*) sin 3r] _t . . . 

a = p% {2M, x0’ - 2~ - pL% [Y,x (p) (a* j- llza*B1* + 2 (Al*)-s - 2b* (Al*)-%) + 

+ Yz2 Q.L) (4b* (A1*)-2 + 1/z a*B1* + 2 (A1*)-2 - 2b (AI*)-?)]} + . . . (3.11) 

Stars indicate the substitution a = a*, b = be. 

4. In order to determine the periodic solutions of system (2.21) when 
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o = l/2, we obtain from formulas (1.23) and (1.22) 

F,(O)= [(L (l/J + X0’ M&2) M, + Yo’ M,L,M,I cm l/2 T + 

+ [(L (‘12) - 20’ MJ2) M2 + Yo’ M,L,M,] sin 1/z z + . . . (4.1) 

u),,(O)= M,N(‘/,) cos z + . . . ( L, = - llpA1 (a/b - l/&-l), L, = 1/2 (1 - ‘/zAl-‘) a-l (4.2) 

From formulas (2.11) and (4.1) we find the expressions 

G, (To) = - 4i-t [(L, (‘M - x0’ (Jf3 + ML,) P, + YO’(M3+/33)L3PJ 
(4.3) 

G, (To) = 2n [(L, (‘M It: %‘(Jf, + ML,) PI + Yo’(IM3 + P3)L3P21 

H2 (T,) = 0, G2 (To) = 23~ (Jf3 + B 3) N, (‘12) (T, = r,n) 

which, when substituted into the system (2.21). give the equations for 

PI and Fg 

IL, (‘is) - l/4 N1 (l/2) - G’ M,L,l P2 + Yo’M3L3P1 + p [-- l/4n;-lg, (T,) + 

+ PI 0%. Pa)1 + p2 ( * ..) = 0 (4.4) 

IL, (‘i,, - */4N1 (‘12) + %'M&,l PI + Yo’fi’SLSP, + p [l/25+ 23 (To) + P2 (PI, k&)1 + 
+p2(...) =o 

BY formula (2.23), and under conditions g3(4w) = g3(4s) = 6 which are 

satisfied when GI = l/2, system (4.4) can be expressed in the form 

Y< ‘.~~&SPI - [%‘J43L2 + 20’ WI (l/2)1 82 + w Vi,) P2 (P12 + P22) + pLp3 (P1, P2) + 

+ p2(...) = 0 (4.5) 

[To’M3L2 - zo’ WI (l/2)1 PI + YolM3L3P2 + w ('12) Pl (P12 + P22) + pLp4 (P1, P2) + 

+p2 (. . .) = 0 

where pi(pI, pz) (i = 1, 2, 3, 4) are entire functions of their argu- 

ments vanishing at PI = pz = 0. We shall assume that the following con- 

dition: 

is 

we 

satisfied. 

M32 (xc, ‘2L22 + yo’2L32) - z,‘W12 (VJ + 0 (4.6) 

By the inequality a > b > 1. which results from the condition 0 = l/2, 

obtain from formulas (4.2) that L, > 0. L, > 0; besides. W1(1/2) f 0. 

Consequently, for 

ing the condition 

and any selection of 

any selection of numbers xc*, ye’ and z,,’ satisfy- 

%’ (roQ + Y0’2) f 0 (4.7) 

the quantities a and b satisfying the relation 
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w = l/Z. there exists only one value Ma 

or, by (2.17) and ;1.3), one value yo" 

I?*” = (ZOo”L22 + y&!&” [q’2_&&2 + yl)‘2Ls2 + z*‘w7*2 (l/2)]-” (4.9) 

at which condition (4.6) is not satisfied. If condition (4.7) is not 
satisfied, relation (4.6) is satisfied for any value of I,. In this way 
condition (4.6) is equivalent to the condition 

To” # l-0” ( or 1133 #M3’) (4.10) 

When condition ‘4.10) is satisfied, then from equations (4.5) it 
follows [71 that pl and pz, expanded in power series in p, begin from a 
term of order not higher than y2. In this case, when o = l/2. the first 
terms of the power series expansion of p of the periodic solution of 
system (1.6) and the a’s can be found from formulas (2.30) and (2.31). 

5. Let us consider the case w = 1, which corresponds to the disc 
(1.15). In this case we must set in formulas (1.18) to (1.23) 

x1 zzz x2 Z v =: 0, v2 = B1 zzz - 1, A, = 1 (5.1) 

Then, substituting in formulas (1.22) and (1.23) for .Sij(‘) (i, j = 

1. 2) 

&QJf z - 2M3 [r,’ (1 - cos Z) + yO’ sin Z] - E2 (a - b) pi, cos 2 (d - E) + ‘/z - co@ El 

S1,(‘) = E (yO’ (1 - 6 /a) [sin (‘c - E) $ sin e] - ab-l x0’ [cos (z - E) - cos E]} (5.2) 

S,,(‘) = l/x M, E [- eos (2x - E) + cos e] 

A’,,(‘) = M, (-ab%,’ 60s z +-. ba-‘y,’ sin z $ ab%,‘) + E2b [l/, cos 2 (v - ef - I/, _i- sin2 e] 

and also by (2.11) and (2.20) we obtain 

C2 (To) = - 432 I2 (Jf3 + P3) xo’ + Ii2 (0 - b) (Pz” - h2)1 (5.3) 
G (To) = nP1 P vf3 + P3) 50’ + l/2 (a - b) 022 - P12)1 

G3 (7'3) = - x I--- 2P3 fy3' (1 - a-lb) 83 + ab-l 9’ &I + 3a-1b-1 xe’yO’ (Ms + @s)) 

& (To) = ax (- 28, [y,’ (l - ba-*) & + ab-‘r’&] + [a-” (a + 1) ~42 - 

-b-2 (b + 1) xc,=1 (Ms + P3)f 

ff2 (To) = 0, ir2 (To) = Jc (M3 + P3) P (M3 + P3) x0’ - (UP12 + h32”)l (T, = 2n) 

Substituting formulas (5.3) in system ( 2.21) and in (2.19) when w= 1. 
we obtain the equations determining @l and & and the expression for a 
in the form 

~~(~~2+~22)=-~~3+~~~r ~Z(~,2+~22)=-~~‘4+... (5.4) 

V, zz 2M3 [a-’ (a + 1) yo’2 - b-* (b -I_ 1) ~~‘~1, I’, =;_ GM,a-lb-‘x,,‘y,,’ (5.5) 
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cc == p% (ZM,z,’ - aPla - bFz2 $~ . . .) (5.6) 

Whence 

Pl = p”% @)I Ys (p) = - v, IV,2 + v*v3 + $3 (. . . ) (5.7) 

Pz = p”sY* (Id, Y4 @J = - T’4 IV22 + v,2]-“3 f /A’$ ( . . .) 

From formulas (5.5) it follows that the quantities V, and V4 do not 
vanish simultaneously: therefore the relations (5.7) are always true, 

with the exception of the case x0’ = ye‘ = ze’ = 0, which we have not 

considered. Consequently, when o = 1, the first terms of the expansion 
of the periodic solution of system (1.6) and the a’s can be expressed 

in the form 

p1 = pLli3Y, (p) cos z + P’~Y~ (p) sin z + pzo’/ b + . . . 

ql= yli3Y, (p) sin z - plAY4 (p.) cos z + p.yO’ / a + . . . (5.6) 

rl = 1 - pzM3 [x0’ (1 - cos z) + yO’ sin T] + . . . , yl = (M3 + pa) cos Z + . . . 

Tl’ zz - (M, + &) sin z + p,“* Y3 (p) sin Z - pL% Y, (p) cos T + . . . 

rl” = 1 - ljz ~%Ms IY3 (p) cos 22 + Yr (p) sin 22 - Y3 (p)] -+- . . . 

a = +c f2Mazg’ - $‘“aY,z (p) - p”“sYrz (p) + . a . ] (5.9) 

6. In the case when o is irrational, on the strength of conditions 

(2.17) and (2.20). we must E81 search for a periodic solution of system 

(1.21) whose period is 2w + a, in the form 

Tz (% l-4 = (MS + Pd cos z + ; fJ, (7) Pk 
k=2 

ewe xx&* cl) and x2&. r-1) are analytic functions to be determined; 

besides, x1(&, 01 = x2(PJ. 0) = 0. Writing these functions as the series 

k=l 

and replacing M, + P1 and M, + pz by the above functions under the con- 

ditions of periodicity (2.18), we obtain by (6.1) an infinite system of 

equations determining the coefficients Qkci). Since the coefficients 

Qp) are determined from the system of linear homogeneous algebraic 

equations 

Q,(l) (I - cos Zzo) - Ql(‘) sin 2no T=; 0, Q1(‘) sin 2z~w + Q1tzt (1 - C.OS 2~0) = 0 
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with non-zero determinant A = 2(1 - cos 2-m), therefore they are trivial 

solutions of the above system, and series (6.2) begins from a term of 

order not lower than ~1’. It follows that the expansion of p2(-r, cl) in 

power series in p also begins from a term of order not lower than p*; 

the quantities H*(T,,) and fi2(T,,) (To = ~-IT) can be found from formula 

(2.12) by replacing N(o) by Nl(a) and MS by M3 + &. 

In this way the first terms of the expansion in power series of p of 

the periodic solution of system (1.6) and the quantity a can be found 

from formulas (2.30) and (2.31). 

7. We shall use now the Eulerian angles 8, w and 9 when analyzing 

the obtained motion of a heavy solid about a fixed point 

Let us mention in advance that, since the initial system (1.1) and 

system (1.21) are autonomous. the periodic solutions will remain 

periodic if t is replaced by t + h, where h is arbitrary. By formula 

(7.1). and by taking into account that the initial instant of time cor- 

responds to the instant t = h, we can replace h by 

‘pO = ‘iZ n + r,h + . . . 

introducing in this way an arbitrary initial angle of spin. 

(7.2) 

We have obtained previously four sets of formulas, (2.30). (3.7), 

(3.10) and (5.8). which exhaust all forms of different expansions of 

the periodic solutions with the prescribed approximations and restric- 

tions. Substituting in (7.1) expansions (2.30). (3.7). (3.10) and (5.3), 

in which t has been replaced by t + h, and relations (1.5) and by using 

(2.17) in the form 

M,=tanOo (7.3) 

we obtain the following expressions for the angles 8 and 9. In the Set 

(2.30) 

e - 8, = - p [e(l) (t + h) - e(l) (h)] + . . . (7.4) 

r. (* - *o) = - Mgc-12,t + pceosefeo ~/COS 8, pP(t + h) - p) (h)] -;- . . . 

6(l)(l) = yo’n-‘Al-’ sin rot -+- z 8’ b-‘B,-’ cos r,t - liZ zO’ tme0 (A, - 1) (A, + I)-’ cos 2r,t 

g(l) (t) = - X0’ b-’ B,-l sin r,t + ~~‘a-~ A,-’ cos r,t + I/,, tan 6, (q -t x2 /A,) sin “rot 

In the set (3.7) 

8 - e. = - p [e(O-) (t + h) - e@) (h)] + . . . (7.5) 

ro (9 - $0) = - Mg C-’ z,t + pccaaece#J l/cos e. pp’(t + h) - lp (h)] + . . . 
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@) (t) = s1 sin rot + sz cos r,t + S, cos 2r,t + sp cos 3rot + s5 sin 374 

$“:‘(t) =-[&--(S-_+)*]sin~$+ [$-(+--k)&]Cosr,t_li 

In the set (3.10) 

8 - 8, = - ~“3 [ec3) (t + h) - e(3) (h)] + . . . (7 .O) 

‘.o (4 - $0) = (- Mg&~c-~ + r/z $‘3 [Yr2 @) + Yg2 &)I (v* - 4v,* /A,*)] t + 

+ ~“8 ~~~~~ I/COS e. [q(3) (t + h) - $3) (h)] + . . 

Of3’ (t) = 1/2 Y, (0) (2b* /Al* - a*) COS rot + 1/z Y, (0) (2b* /A,* - a*) sin rot - 

- ‘/zYl (0) (2b” iAl* + a*) COs 3rot - ‘i, Y, (0) (2b* /Al* f a*) sin 3rot 

$(3) (t) = (‘/z - 1 /Al*) Y, (0) sin rot - (1/2 - 1 /Al*) Y, (0) cos rot + 

+ ‘I3 (l/? + 1 /Al*) Yl (0) sin 3rot - 1/3 (1/2 + 1 /A,*) Y2 (0) cos 3r,t 

In the set (5.8) 

e - e. = - li,p”3 [e(4) (t + h) - ec4) (h)] + . . . (7.7) 

r. (II, - +o) = ~/2~‘~~c-eo ~/COS e. [gw (t + h) - I+~) @)I + . . . 

0f4) (t) = - Y, (0) cos 2r,t - Y4 (0) sin 2r,t - q(4) (t)=Y3 (0) sin 2rot - Y, (0) COs 2r,t 

In all the cases 9 is expressed by the formula 

fp - cpo = [r. + MgC-lro-l (zoCOseo-zosineo)]tf... (7.3) 

In all these formulas 8,. as indicated by formula (7.3). is an arbi- 

trary initial (at t = 0) angle of nutation; v,, is an arbitrary initial 

angle of precession. Replacing h by q. we can see from (7.2) that the 

expressions for the Eulerian angles 8, ‘y and 9 depend on four arbitrary 

constants 80, q+,, ‘p,, and r0 (ra is large). 

From formulas (7.4) to (7.6) it follows that for a heavy solid, when 

z. f 0 (with the exception of the special cases discussed), with one 

point fixed, which spins rapidly about the major or the minor axis of 

the ellipsoid of inertia, it is possible to show initial conditions at 

which the solid will perform, in the first approximation. a pseudo- 

regular precession about the vertical axis. Four out of these six initia 

conditions, 8,. ~0, q~c and r,, (r,-, is large), can be arbitrary. 

As an example, we shall consider the case of a regular Precession of 

a rapidly spinning Lagrange gyroscope (A = B, r0 = y,, = 0). System (I. 1) 

rewritten for this case, will have four particular solutions 
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Substituting solutions (7.9) into (7.1). we obtain the relations 

for which, taking into account that r,, is large, we obtain 
(7.10) 

e = e,, q=*0- Mg c-1 Fo-'Zot + o . ., cp = 'pa + (r. + MgC-‘r,-‘z. cos 6,)t + . . . 

Expressions (7.10) coincide with formulas (7.4), (7.5). (7.6) and 
(7.6) when they are rewritten for the considered case. 

Formulas (7.7) are for the case o = 1, under the condition that 

20 
= 0. Under this last condition the restrictions caused by retaining 

only the first terms in the expansion of the required periodic solution 
permit also an investigation of the cases of irrational o and of o= l/2. 
Formula (7.4) takes care of these two cases. Formulas (7.4) and (7.7) 
will be rewritten now in the following form: 

6 - Bj = Rj sin 0, cos (jr,,t - EJ j- . . . (i = 1, 2), RI = p2El~~0,, 
(7.11) 

El=[(a+)2+(&)y, E2=[Y,=(0)+Yl=(0)]1~~, ej = Ej" - i (~0 - WC) 

c*s El0 = (l-““;) El f 

I 

sin El0 = (b Tl) El , 

y.9 (0) cos E,Q -_ - ye (0) 
ES 

sin es0 = - 
& 

ej = 8, - Rj sin eO cos Ed, $j = $0 %_ Rj sin “j 

where j = 2 is for the case of a disc. 

Let us consider a spherical rectangle bounded by parallels distant 
from the middle parallel Oj by the angle f 
distant from the middle meridian yj by the 

Rj sin 80. and by meridians 
angle f Rj. Then the tra- 

jectorg of the z-axis of our solid will be the ellipse 

(e - ej)2 

Rja sin2 B. + 

(9 - $1" 
RRj2 =I (j = 172) (7.12) 

tangent to the sides of this spherical rectangle at their midpoints. 

The z-axis of the body tracing this ellipse performs, in the first 
approximation, a periodic motion whose period is T = 2a/jr, and at the 
instants of time 
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it will pass through the points of intersection of the middle parallel 

and the bounding meridians, and at the instants 

tnz = I1iz (2n, + 1) n f Ejl / jr0 (n, = 0, It 1, f 2, - * .I 

it will pass through the points of intersection of the middle meridian 

with the bounding parallels. Formula (7.11) shows that the spin differs 
very little from the uniform rotation with large angular velocity r,,. 

Thus, for a heavy solid with one point fixed, with ze = 0, with the 

described restrictions on the moments of inertia, which spins rapidly 

about the major or the minor axis of the ellipsoid of inertia, we can 

show initial conditions at which the body, in the first approximation, 

will perform the motion which we have just found. In this case, as in 

the case when z0 # 0, out of the six initial conditions, at least four, 

0 o’ yea To and r. ( r. is large) can be arbitrary. 
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