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The motion of a heavy solid about a fixed point with high initial angu-
lar velocity has been investigated (omitting the case of Lagrange) for
the case of Goriachev-Chaplygin in [1.2}. Cases with restrictions on the
location of the center of gravity, on moments of inertia and on the
initial conditions has been investigated in [3,4].

In our work we apply the method of small parameters to investigate
the periodic solutions of the equations of motion of a heavy solid with
one point fixed rapidly spinning about one of the principal axes of the
ellipsoid of inertia. In particular, we show that, with the exception
of special cases, when z, # 0 the body will perform a pseudo-Tregular
precession about the vertical axis in the first approximation, and that
at least four of the six initial conditions are arbitrary.

1. Let us consider a heavy solid with one point fixed, whose
ellipsoid of inertia is arbitrary, and whose center of gravity is arbi-
trarily located and not necessarily coinciding with the fixed point.
General equations of motion of this solid and their first integrals are

(1 M g 7 d r s ABC' pqrr
E o Aygr= = v — ), o= —ay (m,., xoygz(,) (1.1)

B—A
)

A—~C
B

)C‘l::

Ap? 4 Bg® + Cr* — 2Mg (zor + yot’' + 27") =
= Ap* + Bq? + Crd — 2Mg (xoYo -+ YoTo' -+ Z0")

1314



Mot ion about a fixed point of a fast spinning heavy solid 1315

Apy + Bqy’ + Cry” = ApoYo + Bqoto’ + Crovo’
v+t =1 (1.2)

Here'po, Q00 Tor Yoo Yo and‘yo " are the intia% values of‘the cor-
responding variables, symbols like (abc) mean cyclic permutations and
indicate equations which are omitted.

We shall assume that at the initial instant of time the principal
axis z of the ellipsoid of inertia makes an angle 6,(6, # 1/2 km, k =
0, 1, 2) with the vertical, and that the body spins about this principal
axis with a high angular velocity r,. Without loss of generality, we
select the moving coordinate system in which the positive branches of
the z-axis and of the x-axis do not make an obtuse angle with the
direction of gravitational acceleration at the initial instant of time.

In this coordinate system, then o =0, and because of the restric-
tions on 8, the initial values and y,’ must satisfy the conditions
0 Yo Yo Yy

To >0, 0 <17 <1 (1.3)
Let us introduce
A B Mgl o
a=%, b=f, e=Ng ,_coVm (1.4)
ro=1zo's Yo=1yy', z=1z', =1+ yo*+ 2o’

By assuming that r;, is large, we assume that p is small. Let us now
introduce a new variable through the formulas p;, 7,, ry, v, vy’ vy
and T

P=CV'1707P17 q=cV’l?91, r = Te (4.5)
T=%7% T=%7 YT=r"1, t=1t/r
Equations (1.1) and their integrals (1.2) will, with the new vari-
able, assume the form

1+ Ay = pat (yo't"t — 2'11)s 11 =’ — pam”
gy + Bipiry = pb7t (z'1i — 2o'1y"), T =ppri — ™M (1.6)

fy = P (— C1paqs + %1 — ¥o'T1)> 1 =R (@ri— Ppi1a)  (w=du/dv)
rP=14p8, $;=a(p®— pd) + b (0> — 9®) —

— 22 (Yio — 1) + ¥ (v’ — 11") + 20" (1 — 1)} (1.7)

rny =1+ pS, {S2 = a (P1oT10 — P171) + b (G10710" — 9171)} (1.8)

P+ 1+ = (1) (1.9)
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Using the first integrals (1.7) and (1.8), we express the variables
ry and y; " i{x tc‘err.ns‘of the remaining variables p,, 7,, v;", v;", and in
those of their initial values py,, 9,4, Yi4: Y1 » and in those of the

small parameter p
ri =14+ S, + 2z 1 — 1"+ ..
7= A 4 pSy — Yo 1Sy + 22 (1 — )+ . .. (1.10)

and reduce the remaining four equations of the system (1.6) to two
second order equations

D1+ o'py = p 2z (@1 4+ A0 v+ Ad~ay] + p? {— 0?py [S, +
+ 2z (1 — )] + Ad5y'Sy + ACipigi® — Asxe' vy — yo'e oy +
+yo’ (4y +a™) @11y — zo'a7 py} + Py {MYy (a7t — b4y ISy +
+ 2z (1 — 11— @2+ a?) pSa}+ ... (1.11)
1;;+ fi=pl+B)p +p*{— 118t + 2z 1 — 1)+ (1 + By) piSa+
+ (A 4+ C) praty + 2’1 — v’ — iz v A+ by — ¢ty
Fpf [— 25 @ + 57 148, 4 2672,'S,] + . - . (1.12)
0= —AB =@—1)G—1N/ab=(A—C)(B—C)/AB (1.13)

Solving the first and fourth equation of system (1.6) for q, and y,’
we obtain
(1.14)

gy = (A7) [— py +pe™ (go'1" — 2’110} T o= (r)? [’1;1 + pay1y]

in which r, and y;" are replaced by (1.10). Substituting (1.14) in the
right-hand terms of equations (1.11) and (1.12), we obtain a quasilinear
autonomous system with two degrees of freedom, whose right-hand sides

depend on Pl; ﬁ}: Y1 ‘;’1: plgl }510’ Yie and ?’10'

We want to find periodic solutions of this system under conditions
A>B>C, or A<B<C (0? is positive). In the first case, w < 1 and
the z-axis should coincide with the major axis of the ellipsoid of
inertia. In the second case, @ >>1 and the z-axis should coincide with
the minor axis of the ellipsoid of inertia. The case @ = 1 corresponds
to the disc

A+B=C (a+tb=1), 2z=0 (1.15)

Let us introduce new variables p, and y, through

P1 = Ps + W% + W% T, Y1 = Te -+ LWVPy (1.16)
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_ xo’Al _ Zu, 1 /11 o i +B1 -
x=5, m=—roa(e ) veioe (4D

Using formulas (1.16) and (1.10) and (1.14) we can obtain the

following power series expansion in u:

Si=8u+ 2" uSu+... (=12
re= 1Sy o =1 Sy (S — VoSu) + .. (1418)
gy =— AP T AT (Y'a Tt — et + o 1 = Yo WVeBy .
Ky = %, + alz,, vy = v — A,7! (1.19)

where

Su = a(ps® — p2*) + b (o> — D)/ A — (1.20)
— 2 [z (Y20 — T2 + Yo' (']’.20 — 72)]
Sya=a [% (P30 — Pa) -+ %1 (Pao¥zo — Pav2)] — bA;2 [yo'a™ (Pao — Po) —
— %y ('1.'20["20 - '\;2[.72)] — %'V (P20 — P2) — Yo'Va (Pao— P2) + 20'Sn
Su=a (PaoY20 — Pa¥s) — DA™ (PaoYao — PaY2)
Sps=a [v (po® — P2°) + % (Y20 — 7o) + %1 (T2 — 7)1 +
+ bAL T [— vy (Poo® — P2°) + a'yo (:Y20 - 72) — % ('%202 - '1;22)]
Substituting (1.16) and (1.18) into equations (1.11) and (1.12), we
obtain
P2 + O*py = PPF (py, Pos Yas Tar W)y F = Fo +pFy+ . .. (1.21)
Tot+ To = WO (s, pos Tos Tar ) @ = @y + pDy + . ..
Fy=f,— v (1 — & p,
Fy = fs — %19y — vy (1 — o) — v1® (1 — 0%) 7, (1.22)
D= ¢y + (1 — 0% + vx)(1 — %) 12, D3 = @3 — vfo + Vrg(1 — ©%) p,

where
(1.23)
fo = — 0*pySyy + Ad71xg'Syy + C1A; 7 papa® + 20 PaYa — Yo @ P2Ye —
— Yo'A;7M (Ay + a™) vapy — zi'a'p,
fa = — @ (S + %7281 + 2paS1) + Ab7'7'See + C1 A7 [py® +

+ %1 ToPo" - 2papy (yo'a™ — ”21.'2)] — o' [— vepy® + '.1’2 (yo'a™ — “2’}"2)]._
—yo'a "t 7y (% 4 %,73) + Vopapal 4 yo'AL (A 4 a7Y) [1g (yo'a™ — %a79)—
— VpaPel — zp'at (% + %y1y) + Yaze' (@ A+ AdTY) 1981 + z'aT peSy
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@y = ~— Y8y + (1 + By paSy — (1 — €y A1’1p2?2f2 + v"ﬁoi'l:zz - 961'3'2'{'2"'
— 2o'b7 1y b xg b — AP
P5 = — VPaSi — 272Sa1 + (1 - By) paSeq - (1 + By) (¢ + %,75) Sey +

(1 —=C) AT = (= + “_1'1’2) l)z'l;z — VD" Pz:fz (yo'a™t — ”2:}’2” +
+ 209"VaPeYe — Yo' (VPaT2 -+ VoTaPo) — 2/071py — 7’0711,y +
+ 20’0785 — A [ 2998, (yo'a™t — %aTa) + vpepoll

This system has a first integral which can be obtained from the inte-
gral (1.9}
Ol ;1'22 + 2p (vpoYy T "21'52:3'2 + Sy (L) = () =1 (1.29)

We are going to look for periodic solutions p,(t, W), p,(r, w,
Yo(7, 1) and y,(1, W) of system (1.21), but only those which satisfy
conditions

P2 0,00 =0, 5, (0,00 =0, 71,0, p =0 {1.25)

Since system (1.21) is autonomous, the above conditions do not affect
the generality of the solution.

Since the frequencies of the generating system

py -+ opy = 0, Tt 72 =0 (1.26)

are @ and 1, we can construct (5] periodic solutions of system (1.21)
in three different ways:

1) ¥hen the two frequencies are distinct but commensurate (@ = m/n,
where m and n are relative primes};

2} When the two frequencies are equal (0 = 1);

3) When the two frequencies are noncommensurate {o is irrational).

2. Let us consider the first case, » = m/n. In this case, there exist
periodic solutions of the generating system (1.26) with the period
T, =2m

P = Ay cos T -+ M, sin o1, 7. = M, cost 2.1
We assume that the initial autonomous system (1.21) has periodic

solutions with the period T, + &, which reduce to the generating solu-
tion (2.1) when p = 0. We shall write the initial conditions through
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the relations

P2 (0, p) = M, + By, _1'72 (O,‘P‘) = o (M, + By)
T2 O, p)= My +Bg, 71:0,p) =0 (2.2)

Let us also introduce the operator

, du du du 1 % U =G, H
U=u-+ 2B+ By b oo Byt = By ... ( 2 k)
dMlBl M, 2 3M3[33 2 aMlz Bl u=g, hk

and express [5] the periodic solution which we want to find in the form

Pa (T, 0) = (M1 + By) cos @t + (M, + By)sin 0T -+ D) Gy (T) pk

k=2

To (T, p) = (M + Bg) cos T 4 Z}Hk (v)p* (2.3)

g =5 {F Gsino@—1t)dy, I (@ ={O)sin(c—1)dy

1 (dHF ) 1 - (d’f"ﬂ o (2.4)

F' ()= =5 , Qi () = G =

dp,k—z / Bep=mp );3::;;.:0

Here p,, @B, and pB; are deviations of the initial values of p,, p,
and Yy in the periodic solutions of equations (1.21) from the initial
values of the same quantities in the generating solution (2.1). These
deviations are functions of p, and they vanish when u = 0.

Since the right-hand sides in system (1.21) begin from a term of the
order p?, we have the following relations:

Fy’ (1) = Fy (9, p2@, 1,0, 1,0) = F,©

@i (1) = Dp (0o, P9, 759, 1,0) = o,

Let us find now the functions Fb(o) and ®2(°). Introducing the nota-
tion

k=2, 3) (2.5)

E=VM:+ M* cose=MI/E, sine=M,/E (2.6)

formulas (2.1) take the form
p2@ (t) = E cos (ot — &), 750 (1) = M, cost 2.7

Using (2.7), and by (1.20), formulas

© _ . . © - © .
S = Sy (P29 P2 119, 7.), 857 = 8o (P, Pz( ), 729, 1,®)
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become

S1® = E? {[a (cose — ;) + bo24,™ (sin® & — 1/,) +
4 Y, (bo?4,~% — a) cos 2 (0T — &)} — 2M4 [xy' (1 — cos 1) + y,’ sin ©] (2.8)

Sn“’) = MgE {acose + Y, (bwd,;" — a) cos [(w — 1) T — ¢e] —
— Y, (oA, + a) cos [(0 + 1) T — e]}

Substituting (2.7) and (2.8) into formulas (1.22) and (1.23), re-
spectively, we obtain for all the values of @ (with the exception of
the case ® = 1/2, which will be considered later) the expressions

2.9)
F, = ML) cosot + M,L(e)sinot + ..., @ = M,N()cos T+ ...

where

L (0) = o [— (aM® + bo?4,° M%) + Yy (M3 + M?) (CL A +
: + 3a + b?A;7Y)] + 2M0tzy — [z/ar + %y (1 — 0]
N(o) = —(aM;® + bo®4,7°M %) — Y, (M® + M) laB, + (2.10)
+ 24,2 (1 — b)) + 2Mazy’ — [2'07 — v (1 — 0?)]

From formulas (2.4) and {2.5) we obtain

.11
. T, To
g, (T = — ?SF,C“” (t)sin ot dty, g, (To) = S Fi9 (t)) cos ot dt;
0 [}
e ¢ To=2
b (To) = mgcpk<°> () sint, dty,  Fx (To) :%@kw’ (t,) cos t,di, ( ey
5 § ’
Hence, by using (2.9) we have
g (To) = —mno "ML (w), & (To) = ML (o)
(2.12)

Ry(To) = 0, hy (To) = nnMsN (o)

The constants M,, oM, and M,, which represent the initial conditions
of the generating solution (2.1), the deviations P, (w), op,(n) and
P4(u) and the correction for the period «, must be found from the con-
ditions for periodicity of the solutions p,(7, W), y,(v, ») and their
first derivatives; these conditions have the form (2.13)

Y, = po(To 4+ a,p) — p(0,p) =0, ¥, = P‘z(To + o, ) —ps O p) = 0
Wy == 7o(To + o ) — 120, ) = 0, ¥y = 15(Ty + o, 1) — 72(0, p) =0
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However, on the strength of the existence of the first integral
(1.24) of system (1.21), the condition for periodicity ¥; = 0 is not in-
dependent [6]. Indeed, writing the integral (1.24) in the form

YoM Ty -+ o ) + 12(To + o, p) + p(...) = 1,20, p) + 15° (0, p) +p(...)

and substituting formulas (2,13), we obtain, according to condition

(2.2)
2(My -+ B Vs + ¥ +pgy (g, ¥y W Wi p) =0 (2.14)

in which @; is an entire function of all its arguments, and, besides,
9,(0, 0, 0, p) = 0. Yhen M, # 0, which, as is shown later, is always
the case, then by formula (2.14) ‘{’3 = f(¥, ¥y, ¥, W), where f is an
entire function of all its arguments, and f(0, 0, 0, u) = 0. Consequentl
we can see from (2.13) that condition Y4 = 0 is automatically satisfied
when the remaining conditions

are satisfied.

Substituting the initial conditions (2.2} in the integral (1.24) when
T = 0, we obtain the equations determining !, and 0,

Mg + 2MBs + Bs® +2uwM3 (M +B) + ... = (1 )2 — 1

Assuming that y," is independent of u, we obtain
M2 = (1Yt — 1, B+ 2MP;s -+ 2pwwM; (M; +8,) + ... =0 (2.16)
From equations (2,16) and from condition {1.3) it follows that (2.47)

0 My= (1 — Tn”z)% (1o")t < o0, Bs=—wv (M; +B) + ...

because y, " is an arbitrary parameter, and M, is an arbitrary positive
constant.

In this way, the periodic solution (2.3) depends on one arbitrary
constant M; and on a function (;(n), vanishing when p = 0. This property
does not depend on the form of « and occurs in all considered cases.

Expanding the right-hand sides of equations (2.13) in power series
of « and retaining only the linear terms {(neglecting even the terms
u%a), we obtain the independent conditions of periodicity (2.15) in the
form
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Pz(ToaH)—M1“Bl+OC® (1W2+Bz) :0
};2 (To, W) — (My + By) — a0 (M, +B,) =0 (2.18)
Yo (To, ) — ot (M5 +B3) = 0

Dy the last equation, from (2.18) and by (2.17) and (2.3), we deter-
mine the function

a = p2 [Hy(To) + pHy (To) 4+ . . .1 [ (Mg + By  (To=2m)  (2.19)

We can conclude from it that by neglecting terms of the order o and
u?a in system (2.18), we neglect also terms of the order ut.

Using (1.25) and (2.2) we shall now investigate those periodic solu-
tions which arise when the fundamental amplitudes vanish, that is

Mi=0, My=21 (2.20)

Substituting relations (2.19), (2.20) and (2.3) in the first two
equations (2.18) and cancelling u?, we obtain the system determining By
and B3,

Gy (To) + pnG3 (To) + B, [H2 (Ty) + !"'H:a (To) + ... 1/ (M3 + By +
+pr(..)=0 (2.21)
Gz (Ty) + Méa (Ty) — By [Hz (Ty) + HH:; (To) + ... 1/ Mz + By +
+u(.)=0

Using (2.12) we can transform the above system into
— Ly (@) —o™Ni (@) anfy /o +p (G (To) +...1=0
L {0) —0 Ny (@) nnp, +p (G (Ty) +...1=0

Here Ll(w) and Nl(w) are obtained from (2.10) by replacing M;, M,
and M, by B;, B, and M, + B,. By (1.13), (1.17) and (1.19), we obtain

Li(0) —0®Ny (@) = W(o) B + B — 2'Wi(o) (2.23)
Wie)=(a—1)(a + b — 2)/2b, Wiw)=0Ba + 3b — 4ab — 2)/ab (2.24)
From the condition that the z-axis has to be directed along the

major or the minor axis of the ellipsoid of inertia of the body, it
follows that for all the comnsidered o, (@) > 0. We shall now show that
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for every value of w =>1 there exists only one pair of numbers a* and
b* satisfying the condition ¥,(w) = 0, and that for the values of o < 1,
Wl((D) }é 0.

Eliminating a* from the system of two nonlinear equations (2.25)
3a* + 3b* — 4a*b* — 2 =0, o?—(a*—1)0* —1)/a** =0
we find

2 _(1—b%p2 1o+ Vel —1)

O = gaa—gw OF D= St L1

(2.26)

It is seen that the above formula is valid only when w >1. Con-
sequently, we have the following relation: (2.27)

] / 1 2 YV ol (0F—1) 1 2 2 (w?—1
0<a*<b*< 1 (\a*: o 3(}2/&(‘” ) e +mt¥iiw ')

When o = 1, it follows from formulas (2.27) that a* = b* = 1/2, and
for every value of @ > 1 there exists a unique pair of distinct values
of a* and b* satisfying (2.25). Besides, by (2.26)

Wy < a* < b* < ¥ (2.28)
Assuming that

Wilw) =0 (2.29)

we obtain from equations (2.22) the expansions of {; and 3, in power
series in p.

To make an estimate of the order of the first terms of these ex-
pansions, we shall consider the quantities C;(T,) and C,(T;) under con-
ditions (2.20). Calculations show that C, (T ) C (7‘)-—0 when o7 2.
This means (7] that the expansions of By and B, in series of 1ntegral
powers of u begin from terms whose order is not higher than u?. Con-
sequently, when o is rational and does not equal 1, 2, 1/2, the first
terms in the expansion of the periodic solution of the system (1.6) and
the quantities « both under the conditions z,” # 0, @ = a*, b = b*, can
be expressed in the following form:

Py = — By /6By Fux Mzcos T4 . . ., gy = wyy'/aA; +pxd,TMsin T+
ri=1—puM;lzy 1 —cost) +y,/sint]l+ ... 7v,=Mzcost+...
W= —Mgsint ... (2.30)

=14 p* {IM; (1 — a)"xy’ + Mz (4; — 1) (4, + D] +
+ Ms(1 —0b)tyysint— Mg(1 —a)ta, cost —
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- 1/2 xM—a?ZOf(Al — 1) (Al "{" 1)“1 Cos 21:} + - ..
o = 2uinn (Msxy' — 2y - .. .) (2.31)
3. Let us consider periodic solutions of system (1.21) when w = 2,

For this purpose we shall find g3(T0) and g3(1b) under condition (2.20).
Under the last conditions formula (1.20) will be rewritten as

S = — 20, [z (1 — cos ) 4+ y sin T, S = 5,9 =0 3.1
S0 = [axMs + 1y M2 (an, + bAr %) -+ a1 b 4o’ My sin ¥ —
— axMgcos T — 1, M® (any + bA;~? %) cos 27

Substituting expression (3.1) into formulas (1.23) and (1,22), and
retaining only terms with sin 27 and cos 2T, we obtain the relation

Fy® =V cos 27 4 Vysin 2v 4. .. (3.2)
Here
Iz .rM 2 ! IM P
V= e — b — 1), V= — 6————[%2?’1 — 5y (9ab® — 17ab +
+ 262 + 4a — 3b + 1) (3.3)

By (3.2) and (2.11) we obtain
g3 (27) = — Y, wV,, g3 (27) = AV, Ty = 2m) (3.4)

Let us now consider formulas (3.3). Substituting in (3.3) a = (1 -~ b)/
(3b + 1) obtained from (1.13) when w = 2, we have

Vys — 6M2x) 25 b2 (1 — b)) (b — 1) (6 4 1) (b 4 ty) (3.5)
Vo= — 8y M2 yo'20" 671 (1 — 8)2 (b — Y/3) (b + 5) (b + /3)
From formula (3.5) and from (1.13) it follows that V1 and V2 vanish
simultaneously if one of the following two conditions:
=0 =15 2y = Yo = (3.6}
is satisfied (from (2.22) it follows that zy 7 0).
This means that, if any one of the two conditions (3.6) is satisfied,
then the case considered reduces to the previous one and the first terms

of the expansions of the periodic solution of system (1.6) and the o's
can be obtained from formulas (2.30) and (2.31).

If V, and V2 do not vanish simultaneously, then by substituting
formulas (3.4) into system (2.22) and under conditions ¥,(2) # 0 and
= 2(n = 1), we obtain

By = Ve /2 Wi(2) - Bo=nValzy Wi+ ...
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Consequently, in formulas (2.30) only the expressions for Py, 0y and

”

¥y Will change and become 3.7)

' V. V. .
P = ——pﬁ%—l— n Mg cost +pmcos 21:—}«;120,—Wi~(§ysm 2t +. ..

Yo' HoMy . 2V, . 2V,
‘5 :p,aAl—i— w A SlnT"‘}"HAlzolWl (2) sin 21“”.4120,W1(2) cos 2T +‘ ..

71" =14 pnBM, (sp + sy 5inT + s, 0087 + 530052t + s,c0837 + ssin3r) 4 ..

where
A — vy Vs (217
50*1-a+ L +1 W@, sl“l—b+2zoW1(z) Al—“)
20’ Vi (2% 4 At
52 1——a+220W1(z)(A1 ) ss =5 Mz’ 77

Vi (& ) Va (_ZE )
=W @\A T8 SE T now, o) \A T8

Under conditions W1(2) =0 (a* = 1/13(5 - 412) and b* = 1/13(5 + le)
system (2.22) will take the form

BB B =—pw* /W2 + .., BB+ B = — e/ WH () +... (38

Hence
B = pYy), Yy (@) = — V¥ [W* (2) (Vy* V317 (L) (3.9)
B, =p" Y, @), Yy () = — Vo* [W* (2) (%2 + Va)I ™l 4 s (L)

In this case the first terms of the expansion of the periodic solu-
tion of system (1.6) and the quantity « can be expressed in the follow-
ing form:

P = 1Y, @) cos 2 4 p'Y, () sin 2v — pxy’ [ BB 4 ui* Mycos T 4 ...
gy = 2, (@) (Ar®) ™ sin 27 — p72Y, () (4%)71 cos 27 4 pyy’ [ a*Ar* +
4 ug* (A Tsin v 4 ..
== 4 — p2 My (2 (1 —cost) + gy sinT] +.
T1 = (My + By) cos T + pu""v*Y; () cos 2t + p*v*Y, @ sin 2t + ...  (3.10)
T = — (M 4+ Bs) sin T — p72v,*Y; (1) sin 27 4 p/2v,*Ya () cos 2T 4 . . .
1" =1+ piMy [a*Y; () + Yy () (6% /AF — a*) cos T + HyY, () (26 /4,7 —
— a%) sin T— 1,Y1 () (2% / Ay* + a*) cos 37 — Y¥, (W) (6% /A* 4 a®) sin 37] . . .
o = pi 2My my' — 2z — p' (Y42 () (a% + Vaa*By* + 2 (4,72 — 25% (4,9)72) +
4 Yo? () (4b* (A*)2 + Yy a*By* + 2 (A%)2 — 26 (AN )+ ... (B.A41)

Stars indicate the substitution a = a*, & = b*.

4. In order to determine the periodic solutions of system (2.21) when
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® = 1/2, we obtain from formulas (1.23) and (1.22)

F9= (L () 4 o' MsLo) My + yo' M3LyM,) cos t/y T +
4 (L (Yy) — 2y MygLy) My + yy' MgL;M ] sinfyv -+ ... (4.1)
OO MV 005+ -, Ly = — Ygrd (alb— oAy, Ly =y (1 — Yy A7) 2 (4.2

From formulas (2.11) and (4.1) we find the expressions

Gy (To) = — 4n [(Ly (Y3} — =o' (My -+ Bs)Ly) By -+ yo' (My-1-Bs)Laf]

G.z (Ty) = 2n [(L1 (1/2) 4+ ﬁol(Ms -+ Bs)Ly) Bl + @/o’(Ms + B-’i)LaBz]
Hy(T) =0, H,(To) =20 (Mg +Bg) Ny ()  (Ty = 4m)

(4.3)

which, when substituted into the system (2.21), give the equations for
pl and 52

1L, (/) — Ya Ny (M) — my" ML) By + yo' MaLaBy + p [— Yyl (Ty) +

4+ Py By, Bl 4+ p2(...) =0 (4.4)
[Lq () — YNy () 4+ 2o’ MaLa] By 4 yo' MaLaBy + p [Yar™ g3 (T} + 0o (By, Ba)] +
+pi(.)=0

By formula (2.23), and under conditions gs(4m) = g5(4™) = 0 which are
satisfied when w = 1/2, system (4.4) can be expressed in the form

iy MyLsBy — [xg’ M3Ly + 25" W, (/)] Ba + W (1) Ba (Bs® + B2B + pes By B) +

+pE(.)=0 (4.5)
[y’ MyLy — 2y’ Wy ()1 By + yo' MsLsB3, + W (Y9) Br (B + B2?) + upa By, B2) -

where pi(ﬁl, Bz) (i =1, 2, 3, 4) are entire functions of their argu-
ments vanishing at 3; =, = 0. We shall assume that the following con-
dition:

M2 (% e? + yo'2Ls?) — 2’ Wi (Mg) =0 (4.6)
is satisfied.

By the inequality e« > b > 1, which results from the condition o = 1/2,
we obtain from formulas (4.2) that L, > 0, L, > 0; besides, ¥;(1/2) 7 0.

Consequently, for any selection of numbers xo', yo' and zo' satisfy-
ing the condition

2o’ (@2 + yo'%) =0 (4.7)

and any selection of the quantities o and b satisfying the relation



Motion about a fixed point of a fast spinning heavy solid 1327

@ = 1/2, there exists only one value M3
M = [z Wi (y) / (20'2 Ly® + yy'2LD)] T2 4.8
or, by (2.17) and {1.3), one value y,”

To” = (20La® + yo'2Ls?) " [22La? - yo'2Ls® - 2022 (/3)] 2 (4.9)

at which condition (4.8) 1is not satisfied. If condition (4.7) is not
satisfied, relation (4.6) is satisfied for any value of M3. In this way
condition (4.6) is equivalent to the condition

To" = To"  (or Ms=k My’) (4.10)

When condition ‘4.10) is satisfied, then from equations (4.5) it
follows [7] that B, and BZ, expanded in power series in |, begin from a
term of order not higher than u2. In this case, when w = 1/2, the first
terms of the power series expansion of @ of the periodic solution of
system (1.6) and the o’s can be found from formulas (2,30) and (2.31).

5. Let us consider the case ® = 1, which corresponds to the disc
{(1.15). In this case we must set in formulas (1,18) to (1.23)

7(,1:‘)42:’\’:0, V2=B1:*1, Alzi (5.1)

Then, substituting in formulas (1.22) and (1.23) for S;;'% (i, j =
1, 2
S = — 2M, [z," (1 — cos T) + y,’ sin t] — E% (a — &) [V, cos 2 (v — &) + 1/p — cos? e}
51, = E {yy’ (1 —b/a) [sin (t — &) + sin &] — ab~* z,’ [cos (T — &) — cos &]}  (5.2)
80" = 1/, My E [— cos (21 — &) + cos g]
S50 = My (—ab-lzy’ cos T baly,’ sin T+ ab~lzy’) -+ E% [Y/, c0s 2 (v —e) — 1/, +sin?e]

and also by (2.11) and (2.20) we obtain

Gy (To) = — 0By [2 (M5 + By} 2’ + Y2 (@ — b) (B2 — B,)] (5.3)
Gy (To) = 7By [2 (M5 + By) 2" + Yy {a — b) (B2 — ByD)]
G3 (Tg) = — nu {— 2B, Iy’ (1 — a71B) By + ab~t 2y’ B] + 32771 25y’ (M3 -+ Bs)}

Gy (To) = m {— 2B, [yg’ (1 — ba™) By + ab~1agBy1 + [a™2 (a + 1) vy —
_ — 57 (5 4 1) %) (M5 + B
Hy (Ty) =0, Hy(Ty) == (M3 + By [2 (M3 4 Bgy 2" — (aBy® + 83,91 (Ty = 2m)

Substituting formulas (5.3) in system (2.21) and in (2.19) when w=1,
we obtain the equations determining pl and pz and the expression for «
in the form

BiB2+ B =—pVyg+ ..., BB+ B =~V ... (5.4)
Vg == 2Mg [a™2 (a + 1) yo'2 — 572 (b -+ 1) 24"2], Vy = BMua 10 1oy, (5.5)
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o = P (2Myzy — afy? — BRE 4 . . .) (5.6)
Whence
Bi=w/Ys(u), Yy =—V V2 + V2l p (. (5.7)
Be=pYa), Yo = —Va V2 + VR4 ph(. )

From formulas (5.5) it follows that the quantities V3 and V4 do not
vanish simultaneously; therefore the relations (5.7) are always true,
with the exception of the case x,’ = y,’ = z,' = 0, which we have not
considered. Consequently, when o = 1, the first terms of the expansion
of the periodic solution of system (1.6) and the o’ s can be expressed
in the form

p1=p"Yg () cos 1+ p'/3Y4 () sin v+ pag’ /b ..

1= W/Ys () sin v — poYy (W) cos T + pyy’ /@ + ... (5.8)
P4 —piMglzy (1 —cost) -y sint]l + ..., 1, = (Mz+ By cost +
1 = — (Mg + Bg)sin T+ p Yy (W sint—p Y, () cost + ...
Ty = 4 — Yy pMs [V, () cos 27 + Y, (1) sin 2t — Y3 @] + . . .
o = pia [2Myzy’ — plaY @ @) — Y3 @ + . . (5.9)

6. In the case when w is irrational, on the strength of conditions
(2.17) and (2.20), we must [8} search for a periodic solution of system
(1.21) whose period is 2w + «, in the form

Pa (T 1) = 11 (B3 1) €08 OF + ¥ (Bg, ) sin @T + D) Gy () p* (6.1)
k=2

jee]
T (T, ) = (Mg + B cos T + D) Hy (1) p*
k=2
where leﬁg' 1) and Xz(Bs' 1) are analytic functions to be determined;
besides, x;(Bj, 0) = Xo(3, 0) = 0. Writing these functions as the series

o0

20, & a2¢Q, B . ) )
u e = 3 (Qur+ B+ B e (= 1,26
=1

and replacing M + ﬁl and M + Bz by the above functions under the con-
ditions of periodlcity (2. 18). we obtain by (6.1) an infinite system of
equations determining the coefficients Q (‘). Since the coefficients
Ql(‘) are determined from the system of linear homogeneous algebraic
equations

0V (4 — cos 2n0) — @, sin 2n6e = 0, Q. W sin 27w + Q,® (1 — cos 2mw) = 0O
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with non-zero determinant A = 2(1 -~ cos 2ww), therefore they are trivial
solutions of the above system, and series (6.2) begins from a term of
order not lower than uz. It follows that the expansion of po(T, W in
power series in p also begins from a term of order not lower than u2;
the quantities H2(To) and ﬁz(To) (To = 2mw) can be found from formula
(2.12) by replacing N(w) by Nl(m) and M3 by M3 + p3.

In this way the first terms of the expansion in power series of W of
the periodic solution of system (1.6) and the quantity « can be found
from formulas (2.30) and (2.31).

7. We shall use now the Eulerian angles 0, y and ¢ when analyzing
the obtained motion of a heavy solid about a fixed point

" a _pr+av ay dp To
cos 0 = 7", 4= 1=y W:r—ﬁcose, tan(po:TT (7.1)

Let us mention in advance that, since the initial system (1.1) and
system (1.21) are autonomous, the periodic solutions will remain
periodic if t is replaced by t + h, where h is arbitrary. By formula
(7.1), and by taking into account that the initial instant of time cor-
responds to the instant ¢ = h, we can replace h by

Qo= YoM+ reh 4 ... (7.2)
introducing in this way an arbitrary initial angle of spin.

We have obtained previously four sets of formulas, (2.30), (3.7),
(3.10) and (5.8), which exhaust all forms of different expansions of
the periodic solutions with the prescribed approximations and restric-
tions. Substituting in (7.1) expansions (2.30), (3.7), (3.10) and (5.3),
in which t has been replaced by t + h, and relations (1.5) and by using
(2.17) in the form

My — tan 65 (7.3)

we obtain the following expressions for the angles § and . In the set
(2.30)

0— 0, =—p2 6V @+ n)— 0V H ... (7.4)
ro (p — po) = — MgCzgt + pocosecdy ¥ cos B, [P (e + B) — @ ()] + . ..
00() = yo'a 1A sin rot + o’ b71By L €08 rot — Yy 2o’ 1an 09 (Ay — 1) (Ay + 1)t cos 2rgt
P () = — = b1 By tsin rgt -+ yo'a™ Ay cos ret - Yy tan 0y (%y - %2/ Ay) sin 2ret

In the set (3.7)
0—0p—=—p2[0 2 4 h) — 0D W] 4 ... (7.5)
ro (h — o) = — Mg C1 25t + e casecBy ¥ cos B, (Y2 4 1) — @ W] 4 . .«
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0@ () = s, sin rot + s, €08 rgt 4+ 55 €05 2rgt + 5, COS 3rgt + s5 sin 3rgt
W — [ 2 (L L) V1 ] . L (i L) Vs
‘P (t) - l: B - ( 2 Ay Zo/Wl'(Z)V sin rot + l_aAl —\2 A Zo'W]_ (2) cos rot+
tan 60( ﬁ) . 1 (i 1 ) Vsindret 1 /1 1 )V200537'0t
+ g\t gysin 2t + gy gy oW o) T3 (? + A7) 2w )

In the set (3.10)

80— 6 =—p” (09 ¢+ n—0w +... (7.6)
7o (B — o) = {— Mgz,C™t -+ Yy p' [V 2 () + Y2 W] (V¢ — 4vp* / AN} ¢ -
4 't coosecly V c0s 0o [V (¢ 4 B) — P (W] 4 . .

0% (1) = 1/, Y, (0) (2b* [ A* — a*) c0s rot + Y, Yy (0) (26% [ A ¥ — a*) sin rot —
— 1,71 (0) (2b* / Ay* -+ a*) ¢0s 3rot — Yy Y,y (0) (26% [ A;* 4- a*) sin 3ryt

¢(3) (1) = My — 1/ A*) Y, (0) sin rot — (Mo — 1/ A44*) Y, (0) cos 7ot +
+ Yy My 17 A*) Y (0) sin 3rot — Yy (M 4 1/ A*) Yy (0) cos 3rgt

In the set (5.8)

0 — 0 = — au" [6W (¢ 4+ B) — 69 (W] 4. .. (1.7)
ro (p — o) = Y/anccosecOy Y cos B [ (¢ 4 B) — W (W] + . ..
04 (1) — — Y5 (0) cos 2rot — Y4 (0) sin 2rgt — Y@ ()=Y, (0) sin 2ret — Y4 (0) cos 27yt

In all the cases ¢ is expressed by the formula
@ — Qo =[rg + MgClry™ (2508 0, — zysin Op)] ¢ 4- ... (7.8)

In all these formulas 60, as indicated by formula (7.3), is an arbi-
trary initial (at ¢t = 0) angle of nutation; Yo is an arbitrary initial
angle of precession. Replacing h by Py We can see from (7.2) that the
expressions for the Eulerian angles 0, y and ¢ depend on four arbitrary
constants 6,, y,, ¢, and ry (r, is large).

From formulas (7.4) to (7.6) it follows that for a heavy solid, when
zy ? 0 (with the exception of the special cases discussed), with one
point fixed, which spins rapidly about the major or the minor axis of
the ellipsoid of inertia, it is possible to show initial conditions at
which the solid will perform, in the first approximation, a pseudo-
regular precession about the vertical axis. Four out of these six initia
conditions, 60, Yo, Pg and r, (r, is large), can be arbitrary.

As an example, we shall consider the case of a regular precession of
a rapidly spinning Lagrange gyroscope (4 = B, xg T ¥g = 0). System (1.1)
rewritten for this case, will have four particular solutions
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'I'” == ']’0”, P = 7\.@’, q = l]", r=—rg (7.9)
byo"c? N\ A—C Mgz,
)2) » my ==

e R (R e e

ro (my —1)
=TT el A 9

A=

Substituting solutions (7.9) into (7.1), we obtain the relations
05 8 = 1,7, dP/dt = h, do/dt = rg — A7",

for which, taking into account that ro is large, we obtain (74
7.10)

6 = 0, Y =1po— MgChrglzt + .. ., @ = @y + (ro + MgClryz5 cos O) 4 . .

Expressions (7.10) coincide with formulas (7.4), (7.5), (7.6) and
{7.8) when they are rewritten for the considered case.

Formulas (7.7) are for the case w = 1, under the condition that
zy = 0. Under this last condition the restrictions caused by retaining
only the first terms in the expansion of the required periodic solution
permit also an investigation of the cases of irrational o and of w=1/2.
Formula (7.4) takes care of these two cases. Formulas (7.4) and (7.7)
will be rewritten now in the following form:
6— 6, =R;sinbcos(jrot—e)+ ... (=12}, Ry= WEE | cosec 0y
(7.4
Y—Y; = R;sin (fro¢ — &) + ..., Ry= 1,0 8E, cosect,
P— @ = (ro — Mgl ry  zsin B £ + . . .

’ 2 / 2 l/2
5=[(Z1) +25) ] B=reotveont,  g=er—io—ym
2o’ Yo' Y5 (0) Y, {0)

g o

cos 81°=m, sin 81°=m, €0S £y° == Fa sin ,° = —p—

8; = 8, — R, sin 9, cos g, Y; = Yo 4 R;sin &

where j = 2 is for the case of a disc.

Let us consider a spherical rectangle bounded by parallels distant
from the middle parallel ©. by the angle ¥ R. sin 60. and by meridians
distant from the middle meridian y. by the angle &t Rj. Then the tra-
jectory of the z-axis of our solid will be the ellipse

O—07  (@—» ,
Rismil © REF 1 G=1,2) (1.12)

tangent to the sides of this spherical rectangle at their midpoints.

The z-axls of the body tracing this ellipse performs, in the first
approximation, a periodic motion whose period is T = 21r/jro and at the
instants of time
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ty, = (ing + &) /jr (=0, +1, 42,...)

it will pass through the points of intersection of the middle parallel
and the bounding meridians, and at the instants

ty, = [z @ry+ ) %+ &5 /jre (g =0, £1, +2,..)

it will pass through the points of intersection of the middle meridian
with the bounding parallels. Formula (7.11) shows that the spin differs
very little from the uniform rotation with large angular velocity roe

Thus, for a heavy solid with one point fixed, with z = 0, with the
described restrictions on the moments of inertia, which spins rapidly
about the major or the minor axis of the ellipsoid of inertia, we can
show initial conditions at which the body, in the first approximation,
will perform the motion which we have just found. In this case, as in
the case when z # 0, out of the six initial conditions, at least four,
8y yoo @y and r, (r, is large) can be arbitrary.
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